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INTRODUCTION:Current approaches to epidemic
monitoring rely on case counts, test positivity
rates, and reported deaths or hospitalizations.
Thesemetrics, however, provide a limited and
often biased picture as a result of testing con-
straints, unrepresentative sampling, and report-
ing delays. Random cross-sectional virologic
surveys can overcome some of these biases by
providing snapshots of infection prevalence
but currently offer little information on the
epidemic trajectory without sampling across
multiple time points.

RATIONALE:Wedevelop a newmethod that uses
information inherent in cycle threshold (Ct)
values from reverse transcription quanti-
tative polymerase chain reaction (RT-qPCR)
tests to robustly estimate the epidemic trajec-
tory from multiple or even a single cross sec-
tion of positive samples. Ct values are related

to viral loads, which depend on the time since
infection; Ct values are generally lower when
the time between infection and sample col-
lection is short. Despite variation across in-
dividuals, samples, and testing platforms, Ct
values provide a probabilistic measure of time
since infection.We find that the distribution of
Ct values across positive specimens at a single
time point reflects the epidemic trajectory: A
growing epidemicwill necessarily have a high
proportion of recently infected individuals with
high viral loads, whereas a declining epidemic
will havemore individualswith older infections
and thus lower viral loads. Because of these
changing proportions, the epidemic trajectory
or growth rate should be inferable from the
distribution of Ct values collected in a single
cross section, and multiple successive cross
sections should enable identification of the
longer-term incidence curve.Moreover, under-

standing the relationship between sample
viral loads and epidemic dynamics provides
additional insights into why viral loads from
surveillance testing may appear higher for
emerging viruses or variants and lower for out-
breaks that are slowing, even absent changes
in individual-level viral kinetics.

RESULTS: Using a mathematical model for
population-level viral load distributions cali-
brated to known features of the severe acute
respiratory syndrome coronavirus 2 (SARS-
CoV-2) viral load kinetics, we show that the
median and skewness of Ct values in a random
sample change over the course of an epidemic.
By formalizing this relationship, we demon-
strate that Ct values from a single random cross
section of virologic testing can estimate the
time-varying reproductive number of the virus
in a population, which we validate using data
collected fromcomprehensive SARS-CoV-2 test-
ing in long-term care facilities. Using a more
flexible approach to modeling infection inci-
dence, we also develop a method that can reli-
ably estimate the epidemic trajectory in even
more-complex populations, where interven-
tions may be implemented and relaxed over
time. Thismethod performed well in estimat-
ing the epidemic trajectory in the state of
Massachusetts using routine hospital admis-
sions RT-qPCR testing data—accurately rep-
licating estimates from other sources for the
entire state.

CONCLUSION:Thisworkprovides a newmethod
for estimating the epidemic growth rate and
a framework for robust epidemic monitoring
using RT-qPCR Ct values that are often simply
discarded. By deploying single or repeated (but
small) randomsurveillance samples andmaking
the best use of the semiquantitative testing data,
we can estimate epidemic trajectories in real
time and avoid biases arising from nonrandom
samples or changes in testing practices over
time. Understanding the relationship between
population-level viral loads and the state of an
epidemic reveals important implications and
opportunities for interpreting virologic surveil-
lance data. It also highlights the need for such
surveillance, as these results show how to use
it most informatively.▪
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Ct values reflect the epidemic trajectory and can be used to estimate incidence. (A and B) Whether
an epidemic has rising or falling incidence will be reflected in the distribution of times since infection (A),
which in turn affects the distribution of Ct values in a surveillance sample (B). (C) These values can be used
to assess whether the epidemic is rising or falling and estimate the incidence curve.
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Estimating epidemiologic dynamics from
cross-sectional viral load distributions
James A. Hay1,2,3*†, Lee Kennedy-Shaffer1,2,4*†, Sanjat Kanjilal5,6, Niall J. Lennon7,
Stacey B. Gabriel7, Marc Lipsitch1,2,3, Michael J. Mina1,2,3,8*

Estimating an epidemic’s trajectory is crucial for developing public health responses to infectious
diseases, but case data used for such estimation are confounded by variable testing practices. We show
that the population distribution of viral loads observed under random or symptom-based surveillance—in
the form of cycle threshold (Ct) values obtained from reverse transcription quantitative polymerase
chain reaction testing—changes during an epidemic. Thus, Ct values from even limited numbers of
random samples can provide improved estimates of an epidemic’s trajectory. Combining data from
multiple such samples improves the precision and robustness of this estimation. We apply our methods
to Ct values from surveillance conducted during the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) pandemic in a variety of settings and offer alternative approaches for real-time estimates
of epidemic trajectories for outbreak management and response.

R
eal-time tracking of the epidemic trajec-
tory and infection incidence is funda-
mental for public health planning and
intervention during a pandemic (1, 2). In
the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) pandemic, key epi-
demiological parameters, such as the effective
reproductive number Rt, have typically been
estimated using the time series of observed
case counts, hospitalizations, or deaths, usu-
ally on the basis of reverse transcription quan-
titative polymerase chain reaction (RT-qPCR)
testing. However, limited testing capacities,
changes in test availability over time, and re-
porting delays all influence the ability of rou-
tine testing to detect underlying changes in
infection incidence (3–5). The question of
whether changes in case counts at different
times reflect epidemic dynamics or simply
changes in testing have economic, health, and
political ramifications.
RT-qPCR tests provide semiquantitative re-

sults in the form of cycle threshold (Ct) values,
which are inversely correlated with log10 viral
loads, but they are often reported only as binary
“positives” or “negatives” (6, 7). It is common

when testing for other infectious diseases to
use this quantification of sample viral load,
for example, to identify individuals with higher
clinical severity or transmissibility (8–11). For
SARS-CoV-2, Ct values may be useful in clin-
ical determinations about the need for isola-
tion and quarantine (7, 12), identification of the
phase of an individual’s infection (13, 14), and
predictions of disease severity (14, 15). How-
ever, individual-level decision-making on the
basis of Ct values has not been widely imple-
mented, owing tomeasurement variation across
testing platforms and samples and a limited
understanding of SARS-CoV-2 viral kinetics
in asymptomatic and presymptomatic infec-
tions. Although a single high Ct valuemay not
guarantee a low viral load in one specimen—for
example, because of variable sample collection—
measuring high Ct values in many samples will
indicate a population with predominantly
low viral loads. Cross-sectional distributions
of Ct values should therefore represent viral
loads in the underlying population over time,
which may coincide with changes in the epi-
demic trajectory. For example, a systematic
increase in the distribution of quantified Ct
values has been noted alongside epidemic de-
cline (12, 14, 16).
Here, we demonstrate that Ct values from

single or successive cross-sectional samples of
RT-qPCR data can be used to estimate the epi-
demic trajectory without requiring additional
information from test positivity rates or serial
case counts. We demonstrate that population-
level changes in the distribution of observed
Ct values can arise as an epidemiological phe-
nomenon, with implications for interpreting
RT-qPCR data over time in light of emerging
SARS-CoV-2 variants. We also demonstrate
how multiple cross-sectional samples can be

combined to improve estimates of population
incidence, ameasure that is often elusivewith-
out serological surveillance studies. Collectively,
we providemetrics formonitoring outbreaks in
real time—using Ct data that are collected but
currently usually discarded—and ourmethods
motivate the development of testing programs
intended for outbreak surveillance.

Relationship between observed Ct values and
epidemic dynamics

First, we show that the interaction of within-
host viral kinetics and epidemic dynamics can
drive changes in the distribution of Ct values
over time, without a change in the underlying
pathogen kinetics. That is, population-level
changes in Ct value distributions can occur
without systematic changes in underlying
postinfection viral load trajectories at the in-
dividual level. To demonstrate the epidemio-
logical link between transmission rate and
measured viral loads or Ct values, we first
simulated infections arising under a determi-
nistic susceptible-exposed-infectious-recovered
(SEIR)model (Fig. 1A andMaterials andmeth-
ods, “Epidemic transmission models”). Param-
eters used are supplied in table S1. At selected
testing days during the outbreak, simulated
Ct values are observed from a random cross-
sectional sample of the population using the Ct
distribution model described in the “Ct value
model” section of theMaterials andmethods
and shown in figs. S1 and S2. By drawing simu-
lated samples for testing from the population
at specific time points, these simulations re-
create realistic cross-sectional distributions of
detectable viral loads across the course of an
epidemic. Throughout, we assume everyone
is infected at most once, ignoring reinfections
because these appear to be a negligible portion
of infections in the epidemic so far (17).
Early in the epidemic, infection incidence

grows rapidly, and thusmost infections arise
from recent exposures. As the epidemicwanes,
however, the average time elapsed since expo-
sure among infected individuals increases as
the rate of new infections decreases (Fig. 1, B
and E) (18). This is analogous to the average
age being lower in a growing versus declin-
ing population (19). Although infections are
usually unobserved events, we can rely on an
observable quantity, such as viral load, as a
proxy for the time since infection. Because
Ct values change asymmetrically over time
within infected hosts (Fig. 1C), with peak viral
load occurring early in the infection, a ran-
dom sampling of individuals during epidemic
growth is more likely to sample recently in-
fected individuals in the early phase of their
infection and therefore with higher quantities
of viral RNA. Conversely, randomly sampled
infected individuals during epidemic decline
are more likely to be in the later phase of in-
fection, typically sampling lower quantities
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of viral RNA, although there is substantial
sampling and viral load variability at all time
points (Fig. 1D). The overall distribution of
observed Ct values under randomized sur-
veillance testing therefore changes over time,

as measured by the median, quartiles, and
skewness (Fig. 1G). Although estimates for an
individual’s time since infection based on a
single Ct value will be highly uncertain, the
population-level distribution of observed Ct

values will vary with the growth rate—and
thereforeRt—of new infections (Fig. 1, F andH).
To summarize this key observation in the

context of classic results, we find that fast-
growing epidemiologic populations (Rt> 1 and
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Fig. 1. The Ct value distribution reflects epidemiological dynamics over the
course of an outbreak. (A) Per capita daily incidence (histogram) and daily
growth rate (blue line) of new infections in a simulated epidemic using an SEIR model.
(B) Median days since infection versus daily growth rate of new infections by epidemic
day. Labeled points here, and in (E) to (G), show five time points in the simulated
epidemic. (C) Observed Ct value by day for 500 randomly sampled infected
individuals. (D) Viral kinetics model (increasing Ct value after peak and subsequent
plateau near the limit of detection), demonstrating the time course of Ct values (x axis;
line shows mean, and ribbon shows 95% quantile range) against days since infection

(y axis). Note that the y axis is arranged to align with (E). (E) Distribution of days since
infection (violin plots and histograms) for randomly selected individuals over the
course of the epidemic. Median and first and third quartiles are shown as green lines
and points, respectively. (F) Skewness of observed Ct value distribution versus daily
growth rate of new infections by epidemic day. (G) Distribution of observed Ct values
(violin plots and histograms) among sampled infected individuals by epidemic day.
Median and first and third quartile are shown as purple lines and points, respectively.
(H) Time-varying effective reproductive number, Rt, derived from the SEIR simulation,
plotted against median and skewness of observed Ct value distribution.
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growth rate r > 0) will have a predominance of
new infections and thus of high viral loads,
and shrinking epidemics (Rt < 1 and r < 0) will
have more older infections and thus low viral
loads at a given cross section, where the rela-
tionship between Rt and r is modulated by the
distribution of generation intervals (20). Sim-
ilar principles have been applied to serolog-
ic data to infer unobserved individual-level
infection events (16, 21–23) and population-
level parameters of infectious disease spread
(21, 24–28).
We find that this phenomenon might also

be present, though less pronounced, among
Ct values obtained under symptom-based sur-
veillance, where individuals are identified and
tested after symptom onset. Similar to the case
of random surveillance testing, Ct values ob-
tained through the testing of recently symp-
tomatic individuals are predicted to be lower
(i.e., viral loads are higher) during epidemic
growth than those obtained during epidemic
decline (figs. S3 and S4). However, defining
the exact nature and strength of this relation-
ship will depend on a number of conditions
being met (fig. S4, caption).
By modeling the variation in observed Ct

values arising from individual-level viral growth
and clearance kinetics and sampling errors, the
distribution of observed Ct values in a random
sample becomes an estimable function of the
times since infection, and the expected median
and skewness of Ct values at a given point in
time are then predictable from the epidemic
growth rate. This function can then be used to
estimate the epidemic growth rate from a set
of observed Ct values. A relationship between
Ct values and epidemic growth rate exists under
most sampling strategies, as described above,
but calibrating the precise mapping is neces-
sary to enable inference (e.g., using a different
RT-qPCR; fig. S5). This mapping can be con-
founded by testing biases arising, for example,
from delays between infection and sample col-
lection date when testing capacity is limited or
through systematic bias toward samples with
higher viral loads, such as those from severely
ill individuals. Here, we focus on the case of
random surveillance testing, where individu-
als are sampled at a random point in their in-
fection course.

Inferring the epidemic trajectory using a
single cross section

From these relationships, we derive a method
to infer the epidemic growth rate given a sin-
gle cross section of randomly sampledRT-qPCR
test results. The method combines twomodels:
(i) the probability distribution of observed Ct
values (and the probability of a negative result)
conditional on the number of days between in-
fection and sampling and (ii) the likelihood of
being infected on a given day before the sample
date. For the first, we use a Bayesianmodel and

define priors for the mode and range of Ct
values after infection on the basis of the exist-
ing literature (Materials andmethods, “Ct value
model” and “Single cross sectionmodel”). For
the second, we initially develop two models to
describe the probability of infection over time:
(i) constant exponential growth of infection
incidence and (ii) infections arising under an
SEIRmodel. Bothmodels provide estimates for
the epidemic growth rate but make different
assumptions regarding the possible shape of
the outbreak trajectory: The exponential growth
model assumes a constant growth rate over
the preceding 5 weeks and requires few prior
assumptions, whereas the SEIRmodel assumes
that the growth rate changes daily depending
on the remaining number of susceptible indi-
viduals but requires more prior information.
To demonstrate the potential of thismethod

with a single cross section from a closed pop-
ulation, we first investigate how the distri-
bution of Ct values and prevalence of PCR
positivity changed over time in four well-
observedMassachusetts long-term care facili-
ties that underwent SARS-CoV-2 outbreaks in
March and April of 2020 (29). In each facility,
we have the results of near-universal PCR test-
ing of residents and staff from three timepoints
after the outbreak began, including the number
of positive samples, the Ct values of positive
samples, and the number of negative samples
(Materials and methods, “Long-term care facil-
ities data”). To benchmark our Ct value–based
estimates of the epidemic trajectory, we first
estimated the trajectory using a standard com-
partmental modeling approach fit to the mea-
suredpoint prevalences over time in each facility
(Fig. 2A). Specifically, we fit a simple extended
SEIR (SEEIRR)model, with additional exposed
and recovered compartments describing the
duration of PCRpositivity (Materials andmeth-
ods, “Epidemic transmission models”), to the
three observed point prevalence values from
each facility. Because the testing was nearly
universal, this approachprovides a near ground
truth of the epidemic trajectory, against which
we can evaluate the accuracy of the Ct value–
based approaches. We call this the baseline
estimate. Figure 2 shows results and data for
one of the long-term care facilities, and figs. S6
and S7 show results for the other three.
As time passes, the distribution of observed

Ct values at each time point in the long-term
care facilities (Fig. 2B) shifts higher (lower viral
loads) and becomes more left skewed. We ob-
served that these shifts tracked with the chang-
ing (i.e., declining) prevalence of infection in the
facilities. To assess whether these changes in Ct
valuedistributions reflectedunderlying changes
in the epidemic growth rate, we fit the expo-
nential growth and simple SEIR models using
the Ct likelihood to each individual cross sec-
tion of Ct values to get posterior distributions
for the epidemic trajectory up to and at that

point in time (Fig. 2C). The only facility-specific
data for each of these fits were the Ct values
and number of negative tests from each single
cross-sectional sample. Additional ancillary in-
formation included prior distributions for the
epidemic seed time (after 1 March) and the
within-host virus kinetics. To assess the fit, we
compare the predicted Ct distribution (Fig. 2B)
and point prevalence (Fig. 2D) from each fit
with the data and compare the growth rates
from these fits with the baseline estimates.
Posterior distributions of all Ct value model
parameters are shown in fig. S8.
Although both sets of results are fitted mod-

els, and so neither can be considered the truth,
we find that the Ct method fit to one cross sec-
tion of data provides a similar posteriormedian
trajectory to the baseline estimate, which re-
quired three separate point prevalences with
near-universal testing at each time point. In
particular, the Ct-basedmodels appear to accu-
rately discernwhether the samples were taken
soonor long after peak infection incidence. Both
methods were in agreement over the direction
of the past average and recent daily growth
rates (i.e., whether the epidemic is currently
growing or declining and whether the growth
rate has dropped relative to the past average).
The average growth-rate estimates were very
similar between the prevalence-only and Ct
value models at most time points, although the
daily growth rate appeared to decline earlier
in the prevalence-only compartmental model.
These estimates have a great deal of variabil-
ity, however, and should be interpreted in that
context. This is especially clear in fig. S7, where
the other facilities exhibit more variability be-
tween estimates from the twomethods. Over-
all, these results show that a single cross section
of Ct values can provide similar information to
point-prevalence estimates from three distinct
sampling rounds when the epidemic trajectory
is constrained, as in a closed population.
To ensure that our method provides accu-

rate estimates of the full epidemic curve, we
performed extensive simulation-recovery ex-
periments using a synthetic closed popula-
tion undergoing a stochastic SEIR epidemic.
Figure S9 shows the results of one such simu-
lation, demonstrating the information gained
from using a single cross section of virological
test data when attempting to estimate the true
infection incidence curve at different points
during an outbreak. We assessed performance
using simulated data from populations of dif-
ferent sizes and varied key assumptions of the
inferencemethod. Specifically,we implemented
a version of the method that uses only positive
Ct values without information on the fraction
positive and tested the impact using prior dis-
tributions of decreasing strengths. Details are
provided in the “simulated long-term care fa-
cility outbreaks” section of the supplementary
materials, and results are in figs. S10 to S12.
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Although no real long-term care facility data
were available to assess the method’s accuracy
during the early phase of the epidemic out-
break, the simulation experiments reveal that
the method can be used at all stages of an
epidemic. Furthermore, although there is a
substantial uncertainty in the growth-rate
estimates, these analyses show that a single
cross section of data can be used to determine
whether the epidemic has been recently in-
creasing or decreasing. The posterior prob-
ability of growth versus decline can be used
for this assessment, acting like a hypothesis
test when the credible interval excludes zero
or in a broader inferential way if it does not.
Although this is a trivial result for SARS-CoV-2
incidence in many settings, where cases, hos-
pitalizations, or deaths already provide a clear
picture of epidemic growth or decline, for lo-
cations and future outbreaks where testing
capacity is restricted, our results show that
a single cross-sectional random sample of a
few hundred tested individuals combined
with reasonable priors (for example, constrain-
ing the epidemic seed time to within a 1- to
2-month window) could be used to immedi-
ately estimate the stage of an outbreak. More-
over, this inferential method provides the basis
for combining cross sections for multiple test-
ing days.

Inferring the epidemic trajectory using
multiple cross sections

Although a single cross section of Ct values can
reasonably estimate the trajectory of a simple
outbreak represented by a compartmental
model,more-complex epidemic trajectorieswill
require more cross sections for proper estima-
tion. Here, we extend our method to combine
data from multiple cross sections, allowing us
to estimate the full epidemic trajectory more
reliably (Materials andmethods, “Multiple cross
sections model” and “MCMC framework”). In
many settings, the epidemic trajectory is mon-
itored using reported case counts. Limiting re-
ported cases to those with positive test results,
the daily number of new positives can be used
to calculate Rt (3). However, this approach can
be obscured when the definition of a case
changes during the course of an epidemic (30).
Furthermore, such data often represent the
growth rate of positive tests, which can change
markedly on the basis of changing test capac-
ity rather than the incidence of infection, re-
quiring careful monitoring and adjustments
to account for changes in testing capacity, the
delay between infection and test report date,
and the conversion from prevalence to inci-
dence. Death counts are also used to estimate
the epidemic trajectory, but these are substan-
tially delayed, and the relationship between
cases and deaths is not stable (31). When, in-
stead, Ct values from surveillance sampling
are available, ourmethods can overcome these

limitations by providing a direct mapping
between the distribution of Ct values and in-
fection incidence. Although case-countmethods
exhibit bias as a result of changing test rates (5),
our method provides a means to estimate Rt

using only one or a few surveillance samples,
and this method can accommodate random
sampling schemes that increase or decrease
over time with test availability.
To demonstrate the performance of these

Ct-based methods, we simulate outbreaks
under a variety of testing schemes using SEIR-
based simulations and sample Ct values from
the outbreaks (Materials and methods, “Simu-
lated testing schemes”). We compare the per-
formance of Rt estimation using reported case
counts (based on the testing scheme) through
the R package EpiNow2 (32, 33)—where re-
porting depends on testing capacity and the
symptom status of infected individuals—with
the performance of our methods when one,
two, or three surveillance samples are available
with observed Ct values, with a total of ~0.3%
of the population sampled (3000 tests spread
among the samples).
Figure 3 plots the posterior median Rt from

each of the 100 simulations of each method
when the epidemic is growing (day 60) and
declining (day 88). Except when only one sam-
ple is used, the Ct-based methods fitting to an
SEIRmodel exhibit minimal bias, even when
thenumber of tests substantially changes across
sample days. For the single-sample estimates
during the growth phase, the posterior median
estimates are shifted above the true value be-
cause a range of R0 values are consistent with
the data—the prior density for R0 is uniform
between 1 and 10 with a median of 5.5, which
weights the posteriormedian higher than the
true value. Methods based on reported case
counts, on the other hand, consistently exhibit
noticeable upward bias when testing rates in-
crease over the observed period and substan-
tial downward biaswhen testing rates decrease.
The Ct-based methods do exhibit higher varia-
bility, however. This is captured by the Bayesian
inference model, as all of the Ct-basedmethods
achieve at least nominal coverage of the 95%
credible intervals among these 100 simulations
(fig. S13).
An alternative approach to estimating Rt

using case counts is to fit a standard compart-
mental model to the observed proportion of
positive tests from a random sample. To dem-
onstrate the value of incorporating Ct values
rather than simply using positivity rates from
a surveillance sample, we also compare the re-
sultswith anSEIRmodel fit to point prevalence
observed at the same sample times, assuming
PCR positivity represents the infectious stage
of the disease. In this alternative method, this
misspecification of the SEIR model results in
inaccurate Rt estimates during the decline
phase of the simulation (Fig. 3B). Although a

more accurate model might distinguish the
infectious stage and duration of PCR positiv-
ity, as in the SEEIRRmodel, this simplemodel
represents an approach that might be used to
infer incidence changes from prevalence data
in the absence of a quantified relationship be-
tween infection state and PCR positivity.
We also assessed the precision of our esti-

mates using smaller sample sizes and differ-
ent deployment of tests among testing days for
a given sample size. These comparisons are
shown in fig. S13, which also compares the
Ct-based method with the positivity-based
estimation. The Ct-based method performs
well in many cases with sample sizes as low
as 200 to 500 tests. When testing is stable,
reported case counts provide a more precise
estimate of the trajectory. However, a small
number of tests (e.g., the same number of tests
as used for 1 day of routine case detection)
devoted to two or three surveillance samples
can provide unbiased estimation when re-
ported case counts may be biased.

Reconstructing complex incidence curves
using Ct values

Simple epidemic models are useful to under-
stand recent incidence trends when data are
sparse or in relatively closed populations where
the epidemic start time is approximately known
(supplementary materials, “epidemic seed time
priors”). In reality, however, the epidemic usu-
ally follows a more complex trajectory that is
difficult to model parametrically. For example,
the SEIR model does not account for the im-
plementation or relaxation of nonpharmaceuti-
cal interventions and behavior changes that
affect pathogen transmission unless explic-
itly specified in the model. For a more flexible
approach to estimating the epidemic trajectory
frommultiple cross sections, we developed a
third model for infection incidence, using a
Gaussian process (GP) prior for the underlying
daily probabilities of infection (34). The GP
method provides estimated daily infection
probabilities without making strong assump-
tions about the epidemic trajectory—assuming
only that infection probabilities on contempo-
raneous days are correlated, with decreasing
correlation at increasing temporal distances
(supplementary materials, “epidemic trans-
missionmodels”). Movie S1 demonstrates how
estimates of the full epidemic trajectory, repre-
senting a simulation for the implementation
and subsequent relaxation of nonpharmaceuti-
cal interventions, can be sequentially updated
using this model as new samples become avail-
able over time. Movie S2 shows how the preci-
sion of the estimated epidemic curve decreases
at smaller sample sizes, where 200 samples per
week were sufficient to reliably track the epi-
demic curve. Movie S3 shows how the esti-
mation remains accurate if sampling is only
initiated partway through the epidemic.
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With the objective of reconstructing the en-
tire incidence curve using routinely collected
RT-qPCR data, we used anonymized Ct values
from positive samples measured from near-
universal testing of all hospital admissions
and nonadmitted emergency room (ER) pa-
tients in the Brigham andWomen’s Hospital
in Boston,Massachusetts, between 15 April and
10 November 2020 (Materials and methods,
“Brigham and Women’s Hospital data”). We
aligned these with estimates for Rt based on
case counts in Massachusetts (Fig. 4, A to C).
The median and skewness of the detectable Ct
distribution were correlated with Rt (Fig. 4B),

in line with our theoretical predictions (de-
picted in Fig. 1). The median Ct value rose
(corresponding to a decline in median viral
load) and skewness of the Ct distribution
fell in the late spring and early summer, as
shelter-in-place orders and other nonpharma-
ceutical interventions were rolled out (Fig. 4C),
but the median declined and skewness rose in
late summer and early fall as these measures
were relaxed, coinciding with an increase in
observed case counts for the state (Fig. 4A).
Using the observed Ct values, we estimated

the daily growth rate of infections using the
SEIR model on single cross sections (Fig. 4D

and figs. S14 and S15) and the full epidemic
trajectory using the GPmodel (Fig. 4E and fig.
S16). Similar temporal trends were inferred
under bothmodels (fig. S17), and theGPmodel
provided growth-rate estimates that followed
those estimated using observed case counts
(Fig. 4F). Although these data are not strictly
a random sample of the community, and the
observed case counts do not necessarily pro-
vide a ground truth for the Rt value, these re-
sults demonstrate the ability of this method
to recreate epidemic trajectories and estimate
growth or decline of cases using only positive
Ct values collected through routine testing.
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Fig. 3. Inferring epidemic trajectory from cross-sectional surveillance
samples with observed Ct values yields nearly unbiased estimates
of the time-varying effective reproductive number, Rt, whereas changing
testing rates lead to biased estimation using reported case counts.
(A) Number of positive tests per day by sampling time in epidemic and testing
scheme for reported case counts (top row) and surveillance Ct sampling
(bottom row), from a simulated SEIR epidemic. Analysis times corresponding to
(B) are shown by the dashed vertical lines. (B) Rt estimates from 100 simulations
for each epidemic sampling time, testing scheme, and estimation method.

Each point is the posterior median from a single simulation. Rt estimates for
reported case counts use EpiNow2 estimation and for surveillance Ct samples
use the Ct-based likelihood for one or multiple cross sections fitted to an
SEIR model. The semitransparent points at the right of the plots are those
surveillance samples fit to an SEIR model using only a binary result of
testing, assuming PCR positivity reflects the infectious compartment. True
model-based Rt on the sampling day is indicated by the black star and
dashed horizontal line, whereas an Rt of 1, indicating a flat outbreak, is indicated
by the solid horizontal line.
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Weassessed the robustness of the estimatedGP
trajectory to smaller sample sizes by refitting
themodel after subsampling different numbers
of Ct values from the dataset (fig. S18). Notably,
our estimated epidemic trajectory using only
routinely generated Ct values from a single
hospital was markedly correlated with changes
in community-level viral loads obtained from
wastewater data (fig. S19) (35).

Discussion

The usefulness of Ct values for public health
decision-making is currently the subject of

much discussion and debate. One unexplained
observation that has been consistently observed
in many locations is that the distribution of
observed Ct values has varied over the course
of the current SARS-CoV-2 pandemic, which
has led to questions over whether the fitness
of the virus has changed (12, 14, 16). Our re-
sults demonstrate that this can be explained
as an epidemiologic phenomenon, without
invoking any change in individual-level viral
kinetics or testing practices. Thismethod alone,
however, cannot prove that this is the case for
any specific setting, as changing viral properties

or changes in test availability may also lead to
such shifts in Ct value distributions. We find
that properties of the population-level Ct dis-
tribution strongly correlate with estimates for
the effective reproductive number or growth
rate in real-world settings, in line with our
theoretical predictions.
Using quantitative diagnostic test results

from multiple different tests conducted in a
single cross-sectional survey, epidemic trends
have previously been inferred from virologi-
cal data (18). The methods we describe here
use the phenomenon observed in the present
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Fig. 4. Cross-sectional distributions of observed Ct values can estimate
the complex statewide epidemic trajectory from hospital-based
surveillance at Brigham and Women’s Hospital in Massachusetts.
(A) Daily confirmed new cases in Massachusetts (gray bars) and estimated
time-varying effective reproductive number, Rt. (B) Estimated Rt from the
case counts versus median and skewness of observed Ct value distribution by
weekly sampling times. (C) Distribution (violin plots and points) and
smoothed median (blue line) of observed Ct values by sampling week. Red
box highlights data used to inform estimates in (D). (D) Posterior median
(yellow arrow) and distribution (blue shaded area) of estimated daily growth
rate of incident infections from an SEIR model fit to a single cross section
of observed Ct value data from the week commencing 14 June 2020. Shading
density is proportional to posterior density. Fits to all single weekly cross

sections are shown in fig. S14. (E) Posterior distribution of relative probability
of infection by date from a GP model fit to all observed Ct values (ribbons
show 95% and 50% CrIs; line shows posterior median). Note that the
y axis shows relative rather than absolute probability of infection, as the
underlying incidence curve must sum to one: Only positive samples were
included in the estimation, and all samples were therefore assumed to have
been from infections. (F) Comparison of estimated daily growth rate of
incident infections from the GP model (blue line and shaded ribbons show
posterior median and 95% CrI) to that from Rt estimation using observed
case counts (red and green line and shaded ribbons show posterior median
and 95% CrI) by date. Note that estimates of infection incidence are made
for dates before the first observed sample date of 15 April 2020, as far back
as 1 March 2020, but the x axis is truncated at 1 April 2020 (fig. S19).
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pandemic and the relationship between inci-
dence rate, time since infection, and virologic
test results to estimate a community’s position
in the epidemic curve, under various models
of epidemic trajectories, based on data from
one or more cross-sectional surveys using a
single virologic test. Comparisons of simulated
Ct values and observed Ct values with growth
rates and Rt estimates validate this general
approach. Despite the challenges of sampling
variability, individual-level differences in viral
kinetics, and the limitations of comparing re-
sults fromdifferent laboratories or instruments,
our results demonstrate that RT-qPCR Ct val-
ues,with all of their variability for an individual,
can be highly informative of population-level
dynamics. This information is lost whenmea-
surements are reduced to binary positive or
negative classifications, as has been the case
through most of the SARS-CoV-2 pandemic.
Here, we focused on the case of randomly

sampling individuals from the population. This
methodwill therefore bemost useful in settings
where representative surveillance samples can
be obtained independently of COVID-19 symp-
toms, such as theREACT study inEngland (36).
Even relatively small cross-sectional surveys,
for example in a given city, may be very useful
for understanding the direction that an out-
break is heading. Standardized data collection
and management across regions, along with
wider use of random sampling, would further
improve the usefulness of thesemethods,which
demonstrate another use case for such sur-
veillance (37, 38). These methods will allow
municipalities to evaluate and monitor, in
real time, the role of various epidemicmitiga-
tion interventions—for example, by conducting
even a single or a small number of random
virologic testing samples as part of surveil-
lance rather than simply relying on routine
testing results.
Extrapolation of these findings to Ct values

obtained through strategies other than a popu-
lation census or a mostly random sample re-
quires additional considerations.When testing
is based primarily on the presence of symp-
toms or contact-tracing efforts, infected individ-
uals are more likely to be sampled at specific
times since infection, which will affect the
distribution of measured Ct values. Further
complications arise when the delay between
infection or symptom onset and sample collec-
tion changes over the course of the epidemic,
for example because of a strain on testing ca-
pacity. Nonetheless, our simulation results
suggest that the epidemic trajectory can still
influence Ct valuesmeasured under symptom-
based surveillance, although the strength of
this association will depend on a number of
additional considerations, as described in fig.
S4. Additional work is needed to extend the
inference methods presented here to use non-
random surveillance samples.

The overall finding of a link between epi-
demic growth rates and measured Ct distri-
butions is important for interpreting virologic
data in light of emerging SARS-CoV-2 variants
(39, 40). When samples are obtained through
population-wide testing, an association be-
tween lower Ct values and emerging variants
can be partially explained by those variants
having a higher growth rate with a prepon-
derance of recent infections compared with
preexisting, declining variants. For example,
a recent analysis of Ct values fromP.1 and non-
P.1 variant samples in Manaus, Brazil, initially
found that P.1 samples had significantly lower
Ct values (41). However, after accounting for
the time between symptom onset and sample
collection date (where shorter delays should
lead to lower Ct values), the significance of this
difference was lost. We caution that this find-
ing does not exclude the possibility of newer
variants causing infections with higher viral
loads; rather, it highlights the need for lines of
evidence other than surveillance testing data.
These results are sensitive to the true distri-

bution of observed viral loads each day after
infection. Different swab types, sample types,
instruments, or Ct thresholds may alter the
variability in the Ct distribution (15, 16, 42, 43),
leading to different relationships between
the specific Ct distribution and the epidemic
trajectory. Where possible, setting-specific
calibrations—for example, based on a refer-
ence range of Ct values—will help to generate
precise estimates. This method will be most
useful in cases where the population-level viral
load kinetics can be estimated, either through
direct validation or by comparison with a ref-
erence standard, for the instruments and sam-
ples used in testing. Here, we generated a viral
kinetics model on the basis of observed prop-
erties of measured viral loads in the literature
(proportion detectable over time after symp-
tom onset, distribution of Ct values from pos-
itive specimens) and used these results to
inform priors on key parameters when esti-
mating growth rates. The growth-rate esti-
mates can therefore be improved by choosing
more precise, accurate priors relevant to the
observations used duringmodel fitting. In cases
where results come frommultiple testing plat-
forms, the model should either be adjusted
to account for this by specifying a different
distribution for each platform on the basis of
its properties or, if possible, the Ct values should
be transformed to a common scale, such as log
viral copies. If these features of the tests change
substantially over time, results incorporating
multiple cross sectionsmight exhibit bias and
will not be reliable.
Results could also be improved if individual-

level features thatmay affect viral load, such as
symptom status, age, and antiviral treatment,
are available with the data and incorporated
into the Ct value model (14–16, 44, 45). A sim-

ilar approach may also be possible using se-
rologic surveys, as an extension of work that
relates time since infection to antibody titers
for other infectious diseases (27, 28). If mul-
tiple types of tests (e.g., antigen and PCR) are
conducted at the same time, combining infor-
mation could substantially reduce uncertainty
in these estimates (18). If variant strains are
associated with different viral load kinetics
and become common (40, 46), this should be
incorporated into the model as well. Other
features of the pathogen, such as the relation-
ship between the viral loads of infector and
infectee, might also affect population-level
variability over time. Using virologic data as a
source of surveillance information will require
investment in better understanding Ct value
distributions, as new instruments and tech-
niques come online and as variants emerge,
and in rapidly characterizing these distribu-
tions for future emerging infectious diseases.
Remaining uncertainty can be incorporated
into the Bayesian prior distribution.
This method has several limitations. Where-

as the Bayesian framework incorporates the
uncertainty in viral load distributions into in-
ference on the growth rate, parametric assump-
tions and reasonably strong priors on these
distributions aid in identifiability. If these para-
metric assumptions are violated—for example,
whenSEIRmodels are used across timeperiods
when interventions likely affected transmission
rates—inference may not be reliable. Addition-
ally, the methods described here and the rela-
tionship between incidence and skewness of Ct
distributions become less reliable when there
are very few positive cases, so results should be
interpreted with caution and sample sizes in-
creased in periodswith low incidence. In some
cases, with one or a small number of cross
sections, the observed Ct distribution could
plausibly result from all individuals very early
in their infection at the start of fast epidemic
growth, all during the recovery phase of their
infection during epidemic decline, or a mixture
of both (Fig. 4E and fig. S15).We therefore used
aparallel temperingMarkov chainMonteCarlo
(MCMC) algorithm for the single cross section
estimates, which can accurately estimate these
multimodal posterior distributions (47). Inter-
pretation of the estimated median growth rate
and credible intervals should be done with
proper epidemiological context: Estimated
growth rates that are grossly incompatible with
other data can be safely excluded.
This method may also overstate uncertainty

in the viral load distributions if results from
different machines or protocols are used simul-
taneously to inform the prior. A more precise
understanding of the viral load kinetics—in
particular, modeling these kinetics in a way
that accounts for the epidemiologic and tech-
nical setting of the measurements—will help
improve this approach and determinewhether
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Ct distribution parameters from different set-
tings are comparable. Because of this, semi-
quantitative measures from RT-qPCR should
be reported regularly for SARS-CoV-2 cases,
and early assessment of pathogen load kinetics
should be a priority for future emerging path-
ogens. The use of control measurements, like
using the ratio of detected viral RNA todetected
humanRNA, could also improve the reliability
and comparability of Ct measures.
The Ct value is a measurement with magni-

tude,whichprovides informationonunderlying
viral dynamics. Although there are challenges to
relying on single Ct values for individual-level
decision-making, the aggregation ofmany such
measurements from a population contains sub-
stantial information. These results demonstrate
howone or a small number of randomvirologic
surveys can be best used for epidemic monitor-
ing. Overall, population-level distributions of Ct
values, and quantitative virologic data in gen-
eral, can provide information on important
epidemiologic questions of interest, even from
a single cross-sectional survey. Better epidemic
planning and more-targeted epidemiological
measures can thenbe implemented on thebasis
of such a survey, or Ct values can be combined
across repeated samples to maximize the use of
available evidence.

Materials and methods summary
Long-term care facilities data

Data from Massachusetts long-term care fa-
cilities were nasopharyngeal specimens col-
lected from staff and residents processed at
the Broad Institute of MIT and Harvard CRSP
CLIA laboratory, with an FDA (Food and Drug
Administration) Emergency Use Authorized
laboratory-developed assay. Ct values for N1
and N2 gene targets were provided along with
sample collection date, a random tube ID, and a
unique anonymized institute ID to reflect that
specimens came fromdistinct institutions. The
specimens used here originated in early 2020
when public health efforts inMassachusetts led
to comprehensively serial testing senior nursing
facilities as described previously (29). Swabs
from those public health effortswere processed
for clinical diagnostics. Sample collection dates
ranged from 6 April 2020 to 5 May 2020, with
each facility undergoing three sampling rounds.
Each round took amedian of 2 days (range, 1 to
6 days) to complete. The anonymized Ct data
were made available, and the N2 Ct values
were used for these analyses. For all analyses
presented here, sample collection dates were
grouped into sampling rounds and analyzed
based on the mean collection date for that
round (i.e., the dates shown in Fig. 2 and figs.
S6 and S7).

Brigham and Women’s Hospital data

Data from the BrighamandWomen’sHospital
inBoston,Massachusetts,werenasopharyngeal

specimens from patients processed on a Holo-
gic Panther Fusion SARS-CoV-2 assay. Ct values
for the ORF1ab gene were provided alongside
sample collection date, with collection dates
ranging from3April 2020 to 10November 2020.
For these analyses, we grouped samples by
week of collection on the epidemiological cal-
endar and used themidpoint of eachweek for
the analyses shown in Fig. 4. Testing during
the first 2 weeks in April 2020 was restricted
to patients with symptoms consistent with
COVID-19 and who needed hospital admission.
After 15 April, testing criteria for this platform
were expanded to include all asymptomatic
hospital admissions, symptomatic patients in
the emergency room who were not admitted
to the hospital, and inpatients requiring test-
ing who were not in labor. Symptomatic ER
patients who were admitted to the hospital
were tested on adifferent PCRplatformand are
not considered here. In the analyses presented
here, we use only samples taken after 15 April.
Although this is not a perfectly representa-
tive surveillance sample, the routine testing
of hospital admissions who were not seeking
COVID-19 treatment creates a cohort that is
less biased than symptom-based testing and
represents the overall rise and fall of cases in
the hospital’s catchment area. Daily data are
aggregated by week. Daily confirmed case
counts for Massachusetts were obtained from
The New York Times, based on information
from state and local health agencies (48).

Epidemic transmission models

Throughout these analyses, we used fourmath-
ematical models to describe daily SARS-CoV-2
transmission over the course of an epidemic.
Full model descriptions are given in the “epi-
demic transmission models” section of the
supplementarymaterials, and a brief overview
is provided here in order of introduction in the
main text. First, the SEIR Model is a compart-
mental model which assumes that the growth
rate of new infections depends on the current
prevalence of infectious and susceptible in-
dividuals by modeling the proportion of the
population who are susceptible, exposed, in-
fected, or recoveredwith respect to disease over
time. Second, the Exponential Growth Model
assumes that new infections arise under a
constant exponential growth rate. Third, the
SEEIRR Model is a modification of the SEIR
model with additional compartments for indi-
viduals who are exposed but not yet detectable
by PCR and individuals who are recovered but
still detectable by PCR. Finally, the Gaussian
Process Model describes the epidemic trajec-
tory as a vector of daily infection probabilities,
where a GP prior is used to ensure that daily
infection probabilities are correlated in time;
days that are chronologically close in time are
more correlated than those that are chrono-
logically distant.

Ct value model
We developed a mathematical model describ-
ing the distribution of observed SARS-CoV-2
viral loads over time after infection. Themodel
is described in full in the “Ct value model”
section of the supplementary materials. This
model is similar to that used byLarremore et al.
(49), but allows for more flexibility in the de-
cline of viral load during recovery. We used a
parametric model describing the modal Ct
value, Cmode(a), for an individual a days after
infection, represented by the solid black line
in fig. S1B. The measured Ct value is a linear
function of the log of the viral load in the sam-
ple, but we describe the model on the Ct scale
to match the data. Because we are interested
in the population-level distribution and not
individual trajectories, we assumed that ob-
served Ct values a days after infection, C(a),
followed a Gumbel distribution with location
(mode) parameter Cmode(a) and scale param-
eter s(a) that also may depend on the number
of days a after infection. We chose a Gumbel
distribution to capture overdispersion of high
measured Ct values. This distribution captures
the variation resulting from both swabbing
variability and individual-level differences in
viral kinetics. We note that at any point in the
infection, there is a considerable amount of
person-to-person and swab-to-swab variation
in viral loads (50–52), including a possible dif-
ference by symptomstatus (15, 53, 54). Tracking
individual-level viral kinetics would require
a hierarchical model capturing individual-
level parameters, but is not necessary for this
analysis.
The rationale behind this parameterization

and the chosen parameter values is discussed
in the “selecting viral kinetics and compartmen-
tal model parameters” section of the supple-
mentarymaterials.We note that in all analyses,
we used informative priors for key features
of viral load kinetics rather than fixing point
estimates, incorporating uncertainty into our
inference. The process for generating these
priors is described in the “informing the viral
kinetics model” section of the supplementary
materials. We performed this calibration step
separately for the long-term care facility and
BrighamandWomen’sHospital datasets, as the
gene targets and testingplatformweredifferent,
and thus Ct values are not directly comparable.

Relationship between observed Ct values and
daily probability of infection
Single cross section model

For a single testing day t, let pt�Amax ; :::; pt�1 be
the marginal daily probabilities of infection
for the whole population forAmax days to 1 day
before t, respectively, where t − Amax is the
earliest day of infection that would result in
detectable PCR values on the testing day. That
is, pt − a is the probability that a randomly se-
lected individual in the populationwas infected
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on day t − a. Let pa(x) be the probability that
the Ct value is x for a test conducted a days
after infection given that the value is de-
tectable (i.e., the Gumbel probability density
function normalized to the observable values).
Then pa(x) = P[C(a) = x]/P[0 ≤ C(a) < CLOD],
where P[C(a) = x] is the Gumbel probabil-
ity density function with location parameter
Cmode(a) and scale parameter s(a). Let fa be
the probability of a Ct value being detectable
a days after infection, which depends on C(a)
and any additional decline in detectability.
Let the PCR test results from a sample of n
individuals be recorded as X1,…,Xn. Then,
for xi < CLOD (i.e., a detectable Ct value), the
probability of individual i having Ct value xi
is given by:

PðXi ¼ xijpt�Amax ; :::; pt�1Þ
¼

XAmax

a¼1

pa xið Þfapt�a

The probability of a randomly chosen indi-
vidual being detectable to PCR on testing
day t is:

PðXi < CLODjpt�Amax ; :::; pt�1Þ ¼
XAmax

a¼1

fapt�a

So the likelihood for the n PCR values is
given by:

L X1; :::;Xn pt�Amax ; :::; pt�aj Þð

¼
Yn
i¼1
½ XAmax

a¼1
pa Xið Þfapt�a

� �I Xi<CLODð Þ

� 1�
XAmax

a¼1
fapt�a

� �I Xi<CLODð Þ�
where I �ð Þ equals 1 if the interior statement
is true and 0 if it is false.
If only detectable Ct values are recorded

as X1,…,Xn, then the likelihood function is
given by:

L X1; :::;Xn pt�Amax ; :::; pt�1j Þð

¼
Yn
i¼1

XAmax

a¼1
pa Xið Þfapt�aXAmax

a¼1
fapt�a

2
4

3
5

¼
Yn

i¼1

XAmax

a¼1
pa Xið Þfapt�a

h i
XAmax

a¼1
fapt�a

� �n

Either of these likelihoods can be maximized
to get nonparametric estimates of the daily
probability of infection, with the constraint
that

XAmax

a¼1
pt�a≤1. To improve power and

interpretability of the estimates, however,
we consider two parametric models based on
the epidemic transmission models described
above: (i) a model assuming exponential
growth of infection incidence over a defined
period before the sampling day and (ii) an

SEIR compartmental model in a closed finite
population, where the basic reproduction num-
ber R0 is a parameter estimated by the model
but does not vary over time (i.e., there are no
interventions that reduce transmissibility).
See the “parametric models for fitting cross-
sectional viral load data” section of the supple-
mentary materials for details of the likelihoods
used in these methods.

Multiple cross sections model

Nowwe consider settings where there are mul-
tiple days of testing, t1,…,tT. We again denote
by pt the probability of infection on day t and
now denote the sampled Ct value for the ith
individual sampled on test day tj byX

tj
i , where

i ∈ 1,…,nj for test day j and j ∈ 1,…,T. Note that
individual i may refer to different individuals
on different testing days. Let {pt} be the daily
probabilities of infection for any day t where
an infection on day t could be detectable using
a PCR test on one of the testing days. By a
straightforward extension of the likelihood
for the single cross section model, the non-
parametric likelihood for the set of infection
probabilities {pt}, when samples with and
without a detectable Ct value are included,
is given by:

LðXt1
1 ; :::;X

t1
n1
; :::;XtT

nT
j ptf gÞ

¼
YT
j¼1
fYnj

i¼1 ½XAmax

a¼1
pa X

tj
i

� �
faptj�a

� �I X
tj
i
<CLOD

� �

� 1�
XAmax

a¼1
faptj�a

� �I X
tj
i
≥CLOD

� ��g
¼
YT
j¼1
f½Ynj

i¼1

XAmax

a¼1
pa X

tj
i

� �
faptj�a

� �I X
tj
i
<CLOD

� ��
� 1�

XAmax

a¼1
faptj�a

h in�
jg

where n�
j is the number of undetectable

samples on testing day tj.
Only considering samples with a detectable

Ct value gives the likelihood:

L Xt1
1 ; :::;X

t1
n1
; :::;XtT

nT
ptf gj Þ

�

¼
YT
j¼1

Ynj

i¼1

XAmax

a¼1
pa X

tj
i

� �
faptj�a

h i
XAmax

a¼1
faptj�a

h inj

8><
>:

9>=
>;

Either of these likelihoods can be parameter-
ized using the exponential growth rate model
described above. However, the exponential
growth rate model is less likely to be a good
approximation of the true incidence proba-
bilities over a longer period of time, so it may
not be a goodmodel formultiple test days that
cover a long stretch of time.
The multiple cross section likelihood is pri-

marily used to fit the GPmodel, estimating the
daily probability of infection, {pt}, conditional
on the set of observed Ct values. (supplemen-
tary materials, “parametric models for fitting

cross-sectional viral load data”). The SEIR
model can be used with multiple testing days
as well. It is fit as described for the single cross
sectionmodel, butwith one of these likelihoods
in place of the single cross section model like-
lihood, with posterior distribution estimates
obtained through MCMC fitting.

MCMC framework

All models, including those using Ct values
(SEIR Model, Exponential Growth Model, and
theGaussian Process Model) and those using
only prevalence (SEIR Model and SEEIRR
Model) were fitted using aMCMC framework.
We used a Metropolis-Hastings algorithm to
generate either multivariate Gaussian or uni-
variate uniform proposals. For all single cross
section analyses (Figs. 2 and 3), we used a
modified version of this framework with par-
allel tempering: an extension of the algorithm
that uses multiple parallel chains to improve
sampling of multimodal posterior distributions
(47). For the multiple cross section analyses in-
cluding those in Fig. 4, we used the unmodified
Metropolis-Hastings algorithm because the
computational time of the parallel temper-
ing algorithm is far longer, and these analy-
ses were underpinned by more data and less
affected bymultimodality. In all analyses, three
chains were run upward of 80,000 iterations
(500,000 iterations for the GP models). Con-
vergence was assessed based on all estimated
parameters having an effective sample size
greater than 200 and a potential scale reduc-
tion factor R̂

� �
of <1.1, evaluated using the coda

R package (55). All assumed prior distributions
are described in table S1.

Simulated data

All simulated data were generated under the
same framework but with different models
and assumptions for the underlying epidemic
trajectory. For each simulation, data were gen-
erated in four steps: (i) the daily probability of
transmission, {pt}, is calculated using either a
deterministic SEIR model, a stochastic SEIR
model, or a GP model; (ii) on each day of the
simulation, new infections are simulated un-
der the model It ~ Binomial(N, pt), whereN is
the population size of the simulation and It
is the number of new infections on day t (all
other individuals are assumed to have es-
caped infection); (iii) a subset of individuals
are sampled on particular days of the simu-
lation determined by the testing schemes
described below and in the “comparison of
analysis methods” section of the supplemen-
tary materials; and (iv) for each individual
sampled on day u, a Ct value was simulated
under the model Xi ~ Gumbel[Cmode(u − tinf),
s(u − tinf)], where tinf is the time of infection
for individual i. Cmode(u − t) and s(u − t) are
described in the “Ct value model” section of
the supplementary materials.
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Simulated testing schemes
Standard approaches to estimating doubling
time, growth rate, or Rt are subject to misesti-
mation as a result of changes in testing policies
(5). To assess the effect of such changes on our
methods, we simulate changes in testing rates
and assess the effect on several methods for
Rt estimation: using EpiNow2 with reported
case counts (33), using Ct-based methods with
random surveillance samples, and using PCR
test positivity alone with surveillance samples.
We test these methods at two periods of an
outbreak—once when the epidemic is rising
and once when it is falling. For the random
samples for each of these analysis time points,
we test from 1 to 3 days of sampling for viro-
logic testing with varying sample sizes across
the test days. Results are shown in Fig. 3 and
fig. S13; more details are in the “comparison of
analysis methods” section of the supplemen-
tary materials.
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