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Abstract:

Genomic scientists have long been promised cheaper DNA sequencing, but deep whole
genomes are still costly, especially when considered for large cohorts in population-level
studies. More affordable options include microarrays + imputation, whole exome sequencing
(WES), or low-pass whole genome sequencing (WGS) + imputation. WES + array + imputation
has recently been shown to yield 99% of association signals detected by WGS. However, a
method free from ascertainment biases of arrays or the need for merging different data types
that still benefits from deeper exome coverage to enhance novel coding variant detection does
not exist. We developed a new, combined, “Blended Genome Exome” (BGE) in which a whole
genome library is generated, an aliquot of that genome is amplified by PCR, the exome regions
are selected and enriched, and the genome and exome libraries are combined back into a
single tube for sequencing (33% exome, 67% genome). This creates a single CRAM with a
low-coverage whole genome (2-3x) combined with a higher coverage exome (30-40x). This
BGE can be used for imputing common variants throughout the genome as well as for calling
rare coding variants. We tested this new method and observed >99% r? concordance between
imputed BGE data and existing 30x WGS data for exome and genome variants. BGE can serve
as a useful and cost-efficient alternative sequencing product for genomic researchers, requiring
ten-fold less sequencing compared to 30x WGS without the need for complicated harmonization

of array and sequencing data.
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Main Text:

Due to the current pricing of DNA sequencing, whole genome sequencing (WGS) of
large cohorts of samples can be cost-prohibitive at the scales needed to robustly discover
genome-wide significant loci. Instead, scientists studying associations between genetic variants
and disease have used single nucleotide polymorphism (SNP) genotyping arrays to capture
common variants' or deep-coverage whole exome sequencing (WES) to capture rare, functional
variants in the 1% coding portion of the genome?. Genotyping data from SNP arrays is often
bolstered by imputation of missing genotypes by making use of linkage-disequilibrium and a
smaller reference panel of sequenced whole genomes. Then, genome-wide association studies
use regression analysis to identify genomic regions associated with a trait or disease of
interest®. A recent analysis of genetic association signal yields from the UK Biobank found that
WES + array + imputation can detect 99% of signals detected by WGS, suggesting that it
should be favored over costly WGS for association discovery in large sample sets.* However,
SNP arrays have been developed primarily based on data from European populations, and this
impacts population genetic analyses and utility for studies of more diverse global populations®.
Merging SNP array data with DNA exome sequencing data together, to capture both rare and
common variants, presents further challenges for analysis. Low-depth WGS with imputation has
recently been shown to be a cost-effective option for capturing both novel and common variants
more accurately than commonly used arrays®, but the need for a method that benefits from
deeper exome coverage for rare coding variant detection without requiring multiple data sets
remains unmet.

To overcome these challenges, and to achieve comparable genetic association yields to
30x WGS with ten-fold less sequencing, we developed a new, combined, “Blended Genome
Exome” (BGE) that can serve as an alternative and cost-efficient sequencing product for
genomic researchers. In this BGE process (Fig. 1), we construct PCR-free whole genomes, take

an aliquot for PCR amplification, select the exome region from the amplified genome through
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hybridization and capture, blend the exome libraries (33%) back with the PCR-free whole
genome libraries (67%) (same sample identification index at the ligation event) into a single
tube, and sequence them together. This creates a single CRAM (condensed BAM) file with a
low-coverage whole genome (2-3x) combined with a higher coverage exome (30-40x). This can
be used both for imputing common variants throughout the genome and calling rare variants in
coding regions, at a fraction of the cost of deep-coverage whole genomes with no need for
merging separate data sets. Here, we present the first high-throughput, in-process, genome and
exome blending method to date that combines 384 exomes and genomes pre-sequencing and
results in a single blended CRAM file for each sample.

Before piloting this new BGE process, we experimented to determine the best
nanomolar blending ratio of whole exome to whole genome library and the amount of
sequencing required per sample. Through iterative tests on samples derived from Hispanic
patients (The Study of Novel Autism Genes)’, we titrated both the WES:WGS blending ratio and
sequencing coverage to determine the best conditions for calling both coding WES and
common WGS variants. Our objective was to achieve >99% r? imputation concordance of BGE
data to 30x whole genome data. We wanted to remain cost-efficient in sequencing, with a low
coverage genome to impute the common variants, while providing enough exome coverage for
90% of exome bases to reach 10x depth. We tested, in this order, 67% WES:33% WGS for 96
samples per lane of NovaSeqS4 (lllumina, San Diego, CA, USA), 67% WES:33% WGS for 48
samples/ lane, 60% WES:40% WGS for 48 samples/ lane, 40% WES60% WGS for 48 samples/
lane, and 33% WES:67% WGS for 64 samples/ lane.

In order to analyze r? imputation concordance, there were 31-62 samples among these
blending ratio test samples for which we had deep whole genome data (mean 30x coverage)
that could serve as a comparison truth set for concordance analysis. (Some samples were
subsequently excluded during these blending ratio testing iterations as they were eventually

depleted of raw DNA material for sequencing). For both BGE CRAMSs and a selection of SNPs
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from the deep whole genomes that are present in the Infinium Global Screening Array
(GSAv1.0), we used the Haplotype Reference Consortium (HRC)? for phasing and imputation.
Imputed calls from selected GSA SNPs were performed in RICOPILI®, which uses Eagle 2.3.5
for phasing and Minimac3 for imputation. We ran the BGE CRAMs through GLIMPSE' version
1.1.1 for genotype refinement, phasing, and imputation. Before testing r? concordance of the
imputed SNPs to the deep whole genomes, we first restricted our deep genome calls only to
GATK PASSing variants. Among each imputed callset, we filtered our calls to a higher quality
subset of imputed calls (INFO score > 0.8 and imputed MAF difference < 15% to whole genome
MAF). Per-sample concordance was then tested on all selected genotypes present in both
callsets, with concordance being the squared correlation coefficient after confirming the match
of locus, reference, and alternate alleles in both datasets.

The first test condition (67% WES:33% WGS and 96 samples per lane of NovaSeqS4)
resulted in 29x WES and 1.5x WGS coverage per sample and >99% r? imputation concordance
of coding variants, but < 99% for whole genome variants. We then continued to iteratively test
the other blending and sequencing coverage conditions. After plotting the varying levels of r?
imputation concordance (Fig 2a,b), we determined that a blend of 33% WES and 67% WGS for
64 samples/ lane provided adequate coverage of each (2-3x WGS and 30-40x WES per
sample) for calling common WGS and coding WES variants (MAF > 5%), with >99% r?
imputation concordance to 30x WGS data for both. BGE data also provided higher r? imputation
concordance to 30x WGS data than imputation from selected SNPs in the Infinium Global
Screening Array (lllumina) pulled from 30X WGS.

Using the optimized blending and sequencing coverage condition (33% WES:67% WGS
for 64 samples/lane), we next piloted the full BGE process, at scale, on a larger 836 sample set
from blood (452) and saliva-derived (384) gDNA. These samples were derived from 64 South
African, 320 Ethiopian (both from the Neuropsychiatric Genetics of African Populations -

Psychosis Study and sequenced under the NIMH Populations Underrepresented in Mental
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illness Association Study (PUMAS)), 384 Chinese (Neuropsychiatric genetics of a Chinese
population from Shanghai Province) patients, as well as 68 from the Broad Institute Study of
Inflammatory Bowel Disease Genetics. Input gDNA was normalized to 50 ng/uL and plated into
a 384-well PCR plate. We purified the normalized gDNA using a 2.75X solid phase reversible
immobilization (SPRI) clean-up with Ampure beads (Beckman Coulter, Indianapolis, IN, USA).
Purified gDNA was then quantified by spectrophotometry and re-normalized to 25 ng/uL. A
target of 134 ng DNA underwent a customized fragmentation/end-repair/ A-tailing reaction for
lllumina-compatible PCR-free library construction with NEBNext Ultra Il FS DNA Library
Preparation Kits (New England Biolabs, Ipswich MA, USA) using the following conditions: 37°C
42.57 min, 65°C 30 min. Next, we ligated unique, dual-indexed adaptors (NEBNext Unique Dual
Index UMI Adaptors, New England Biolabs) to fragments (20°C 20 min) and libraries underwent
two consecutive SPRI automated size-selections. Libraries were then gPCR-quantified (Kapa
Library Quantification Kit, Roche, Basel, Switzerland), normalized before pooling into a single
tube, and concentrated. Pooling, size-selection, and library construction were carried out in
batches of 192 samples.

We took an aliquot from the pre-normalized and pre-pooled PCR-free libraries and used
this as input for PCR amplification (98°C 30 sec, 12 cycles of [98°C 10 sec, 65°C 75 sec], 65°C 5
min) using the NEBNext Ultra Il FS Library Preparation Kit and primers from the indexed
adaptor kit (New England Biolabs). The PCR-amplified libraries were quantified by
spectrophotometer, normalized to 85 ng/uL, and purified (1X SPRI). Libraries were then pooled
and underwent exome capture (Human Comprehensive Exome probes from Twist Biosciences,
South San Francisco, CA ) using the recommended hybridization-capture protocol for xGen
Hybridization Capture Core Reagents (Integrated DNA Technologies, Coralville, 1A).

To calculate nanomolar concentrations for blending 33% exome with 67% genome,
PCR-free and exome-captured pools were both gPCR-quantified on the same gPCR run.

Blended genome-exome pools were again qPCR quantified to calculate optimal loading on
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sequencers. BGE pools of 192 samples were sequenced across 3 lanes of Nova S4 Lanes,
using 2x150 bp reads. A single CRAM file was produced per sample.

The 836 pilot samples yielded a mean of 2.6x estimated WGS coverage and 34.1x mean
WES coverage per sample. An average of 96.35% of exome bases were covered at 10x. Mean
percentage of all reads aligned to the reference was 97.14 (99.5% for blood and 94.78% for
saliva, with a low of 72.9% for saliva due to bacterial DNA). Twenty two African saliva samples
from this pilot study had previously been whole-genome sequenced (30x), allowing us to
perform the same concordance analysis as described in the earlier experiments (using the 1000
Genomes Project reference panel)'. We used the same filtering parameters as above, with an
additional filter for genotypes with posterior probabilities < 0.9, which had a negligible impact on
genotyping call rates but did increase our concordance by a few percentage points. For the
larger 836 pilot sample set, we stratified our concordance analysis by allele frequency bins to
see how lower frequency SNPs were performing. Allele frequencies were estimated from 371
samples of African ancestry in the pilot cohort (64 ascertained from the University of Cape
Town, South Africa, and 371 ascertained from Addis Ababa University, Ethiopia). Singletons are
variants with only a single alternate allele genotype present in the 371 samples, and MAF < 1%
and MAF < 5% both include singletons in their frequency bin (Fig. 2c). In agreement with our
blending optimization experiments, we observed >99% r?imputation concordance of BGE data
with 30x whole genome data, maintained high concordance over the exome, and maintained
concordance levels well above 90% among singleton SNPs for these 22 samples (Fig. 2d),
demonstrating the repeatability and utility of the method.

Since the original development of BGE, we have increased to processing 384 samples
at a time and scaled this process to enable 300,000 samples/year. We have since applied this
new method for well over 150,000 samples to provide cheaper sequencing data for imputation
in large population studies. This 2-3x low-coverage genome combined with the 30-40x deep

exome provides a suitable, cost-effective and unbiased improvement to SNP arrays for
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imputation of common variants while also cataloging rare coding variants, without any need to
harmonize array data with sequencing data. This BGE method will continue to prove useful for
studies of large cohorts for which deep whole genomes are not economically feasible and for
studies of non-European populations for which arrays may not capture critical genetic variation.
BGE, or an adaptation of BGE (different ratios of exome/genome), will also be valuable as a
more affordable tool for generating polygenic and monogenic risk assessments of patients in the
clinic. Rather than waiting for the cost of WGS to decrease, this method requires ten-fold less
sequencing, and can immediately provide genomic researchers with many of the benefits of

deep whole genomes at a fraction of the cost.
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Fig 1: Blended Genome Exome (BGE) lab process. In the BGE lab process, PCR-free
libraries are constructed from gDNA, gPCR-quantified, normalized and pooled. An aliquot of the
individual PCR-free libraries is PCR amplified, and PCR+ libraries are quantified by
spectrophotometer, normalized and pooled. The PCR+ library pool undergoes exome capture, is
enriched and is gPCR-quantified. The PCR-free pool and the PCR+ pool are blended (33%
Exome, 67% Genome) and sequenced on NovaSeqS4 (equivalent of 64 samples/lane).
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Fig 2. Imputation genotype concordance with deep whole genome sequencing across
experiments. a, Per-sample genotype concordance of filtered Haplotype Reference Consortium
(HRC) imputed variants to deep whole genome variants (y-axis) as a function of mean coverage
(x-axis) in the low-pass genome. Gray points are not using low pass genome data, but HRC
imputation results from Infinium Global Screening Array (GSA) selected SNPs from 30x whole
genome sequencing. The larger dots represent the selected blending proportion and lane
throughput (33% Whole Exome Sequence / 67% Whole Genome Sequence / 64 samples per
lane of NovaSeq S4) for the BGE product. b, Per-sample genotype concordance of filtered
imputed variants restricted to annotated protein-coding variants with MAF < 5% in the deep
whole genome sample set (y-axis) as a function of target mean coverage (x-axis) in the exome.
¢,d, SNP counts (c) and concordance (d) from imputation of the full BGE pilot cohort at various
allele frequency bins. Imputation was performed using the 1000 Genomes Project reference
panel, and allele frequencies were estimated from 371 samples of African ancestry in the pilot
cohort. Singletons are variants with only a single alternate allele genotype present in the 371
samples. Per-sample genotype concordance was done on 22 African ancestry samples with
deep whole genome data.
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